
polychrom
Release 0.1.1

Mirny lab

Aug 21, 2023

CONTENTS

1 Installation 3
1.1 Installation errors and possible fixes . 3

2 Structure 5
2.1 polychrom.simulation module . 5
2.2 polychrom.polymerutils module . 10
2.3 polychrom.hdf5_format module . 11
2.4 polychrom.polymer_analyses module . 14
2.5 polychrom.contactmaps module . 18
2.6 polychrom.forces module . 22

3 Indices and tables 31

Python Module Index 33

Index 35

i

ii

polychrom, Release 0.1.1

Polychrom is a package for setting up, performing and analyzing polymer simulations of chromosomes. The simula-
tion part is based around VJ Pande’s OpenMM library - a GPU-assisted framework for general molecular dynamics
simulations. The analysis part is written by the mirnylab.

CONTENTS 1

polychrom, Release 0.1.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

Polychrom requires OpenMM, which can be installed through conda: conda install -c omnia openmm.
See http://docs.openmm.org/latest/userguide/application.html#installing-openmm . In our experience, adding -c
conda-forge listed in the link above is optional.

CUDA is the fastest GPU-assisted backend to OpenMM. You would need to have the required version of CUDA, or
install OpenMM compiled for your version of CUDA.

Other dependencies are simple, and are listed in requirements.txt. All but joblib are installable from either conda/pip,
and joblib installs well with pip.

1.1 Installation errors and possible fixes

Error: After installation, importing openmm or running polychrom code leads to the error:

version GLIBCXX_3.4.30 not found

Fix:

conda install -c conda-forge libstdcxx-ng=12

3

http://docs.openmm.org/latest/userguide/application.html#installing-openmm

polychrom, Release 0.1.1

4 Chapter 1. Installation

CHAPTER

TWO

STRUCTURE

Polychrom is an API, and each simulation has to be set up as a Python script. Simulations are done using a “sim-
ulation” module polychrom.simulation. Forces that define the simulation are found in polychrom.forces and
polychrom.forcekits modules. Contactmaps from simulated conformations can be generated using polychrom.
contactmaps module. Loading and saving individual conformations can be done using polychrom.polymerutils,
while loading/saving whole trajetories is done using polychrom.hdf5_format. P(s), R(s), Rg(s) curves and other
analyses can be done using polychrom.polymer_analyses.

2.1 polychrom.simulation module

2.1.1 Creating a simulation: Simulation class

Both initialization and running the simulation is done by interacting with an instance of polychrom.simulation.
Simulation class.

Overall parameters

Overall technical parameters of a simulation are generally initialized in the constructor of the Simulation class.
polychrom.simulation.Simulation.__init__() . This includes

Techcnical parameters not affecting the output of simulations

• Platform (cuda (usually), opencl, or CPU (slow))

• GPU index

• reporter (where to save results): see :py:mod`polychrom.hdf5_reporter`

Parameters affecting the simulation

• number of particles

• integrator (we usually use variable Langevin) + error tolerance of integrator

• collision rate

• Whether to use periodic boundary conditions (PBC)

• timestep (if using non-variable integrator)

Parameters that are changed rarely, but may be useful

• particle mass, temperature and length scale

• kinetic energy at which to raise an error

5

polychrom, Release 0.1.1

• OpenMM precision

• Rounding before saving (default is to 0.01)

Starting conformation is loaded using polychrom.simulation.Simulation.set_data() method. Many tools for
creating starting conformations are in polychrom.starting_conformations

Adding forces

Forces define the main aspects of a given simulation. Polymer connectivity, confinement, crosslinks, tethering
monomers, etc. are all defined as different forces acting on the particles.

Typicall used forces are listed in polychrom.forces module. Forces out of there can be added using polychrom.
simulation.Simulation.add_force() method.

Forces and their parameters are an essential part of nearly any polymer simulations. Some forces have just a few
paramters (e.g. spherical confinement just needs a radius), while other forces may have lots of parameters and can
define complex structures. For example, harmonidBondForce with a specially-created bond list was used to create a
backbone-plectoneme conformation in Caulobacter simulations (Le et al, Science 2013). Same harmonic bonds that
change over time are used to simulate loop extrusion as in (Fudenberg, 2016).

Some forces need to be added together. Those include forces defining polymer connectivity. Those forces are combined
into forcekits. Forcekits are defined in polychrom.forcekits module. The only example of a forcekit for now is
defining polymer connectivity using bonds, polymer stiffness, and inter-monomer interaction (“nonbonded force”).

Some forces were written for openmm-polymer library and were not fully ported/tested into the polychrom library.
Those forces reside in polychrom.legacy.forces module. Some of them can be used as is, and some of them
would need to be copied to your code and potentially conformed to the new style of defining forces. This includes
accepting simulation object as a parameter, and having a .name attribute.

Defining your own forces

Each force in polychrom.forces is a simple function that wraps creation of an openmm force object. Users can create
new forces in the script defining their simulation and add them using add_force method. Good examples of forces are
in polychrom.forces - all but harmonic bond force use custom forces, and provide explanations of why particular
energy function was chosen. Description of the module polychrom.forces has some important information about
adding new forces.

Running a simulation

To run a simulation, you call polychrom.simulation.Simulation.doBlock()method in a loop. Unless specified
otherwise, this would save a conformation into a defined reporter. Terminating a simulation is not necessary; however,
terminating a reporter using reporter.dump_data() is needed for the hdf5 reporter. This all can be viewed in the example
script.

exception polychrom.simulation.EKExceedsError

Bases: Exception

exception polychrom.simulation.IntegrationFailError

Bases: Exception

class polychrom.simulation.Simulation(**kwargs)
Bases: object

6 Chapter 2. Structure

polychrom, Release 0.1.1

This is a base class for creating a Simulation and interacting with it. All general simulation parameters are
defined in the constructor. Forces are defined in polychrom.forces module, and are added using polychrom.
simulation.Simulation.add_force() method.

RG()

Returns
Gyration ratius in units of length (bondlength).

__init__(**kwargs)
All numbers here are floats. Units specified in a parameter.

Parameters

• N (int) – number of particles

• error_tol (float, optional) – Error tolerance parameter for variableLangevin inte-
grator Values of around 0.01 are reasonable for a “nice” simulation (i.e. simulation with
soft forces etc). Simulations with strong forces may need 0.001 or less OpenMM manual
recommends 0.001, but our forces tend to be “softer” than theirs

• timestep (number) – timestep in femtoseconds. Mandatory for non-variable integrators.
Ignored for variableLangevin integrator. Value of 70-80 are appropriate

• collision_rate (number) – collision rate in inverse picoseconds. values of 0.01 or 0.05
are often used. Consult with lab members on values.

In brief, equilibrium simulations likely do not care about the exact dynamics you’re using,
and therefore can be simulated in a “ballistic” dynamics with col_rate of around 0.001-0.01.

Dynamical simulations and active simulations may be more sensitive to col_rate, though
this is still under discussion/investigation.

Johannes converged on using 0.1 for loop extrusion simulations, just to be safe.

• PBCbox ((float,float,float) or False; default:False) – Controls periodic
boundary conditions If PBCbox is False, do not use periodic boundary conditions If in-
tending to use PBC, then set PBCbox to (x,y,z) where x,y,z are dimensions of the bounding
box for PBC

• GPU (GPU index as a string ("0" for first, "1" for second etc.)) – Ma-
chines with 1 GPU automatically select their GPU.

• integrator ("langevin", "variableLangevin", "verlet",
"variableVerlet",) – “brownian”, or tuple containing Integrator from Openmm
class reference and string defining integrator type. For user-defined integrators, specify
type “brownian” to avoid checking if kinetic energy exceeds max_Ek.

• mass (number or np.array) – Particle mass (default 100 amu)

• temperature (simtk.units.quantity(units.kelvin), optional) – Temperature
of the simulation. Devault value is 300 K.

• verbose (bool, optional) – If True, prints a lot of stuff in the command line.

• length_scale (float, optional) – The geometric scaling factor of the system. By
default, length_scale=1.0 and harmonic bonds and repulsive forces have the scale of 1 nm.

• max_Ek (float, optional) – raise error if kinetic energy in (kT/particle) exceeds this
value

• platform (string, optional) – Platform to use: CUDA (preferred fast GPU platform)
OpenCL (maybe slower GPU platofrm, does not need CUDA installed) CPU (medium
speed parallelized CPU platform) reference (slow CPU platform for debug)

2.1. polychrom.simulation module 7

polychrom, Release 0.1.1

• verbose – Shout out loud about every change.

• precision (str, optional (not recommended to change)) – single is the default
now, because mixed is much slower on 3080 and other new GPUs If you are using double
precision, it will be slower by a factor of 10 or so.

• save_decimals (int or False, optional) – Round to this number of decimals be-
fore saving. False is no rounding. Default is 2. It gives maximum error of 0.005, which
is nearly always harmless but saves up to 40% of storage space (0.6 of the original) Using
one decimal is safe most of the time, and reduces storage to 40% of int32. NOTE that using
periodic boundary conditions will make storage advantage less.

• reporters (list, optional) – List of reporters to use in the simulation.

add_force(force)
Adds a force or a forcekit to the system.

dist(i, j)
Calculates distance between particles i and j.

Added for convenience, and not for production code. Not for use in large for-loops.

do_block(steps=None, check_functions=[], get_velocities=False, save=True, save_extras={})
performs one block of simulations, doing steps timesteps, or steps_per_block if not specified.

Parameters

• steps (int or None) – Number of timesteps to perform.

• increment (bool, optional) – If true, will not increment self.block and self.steps coun-
ters

• check_functions (list of functions, optional) – List of functions to call ev-
ery block. coordinates are passed to a function. If a function returns False, simulation is
stopped.

• get_velocities (bool, default=False) – If True, will return velocities

• save (bool, defualt=True) – If True, save results of this block

• save_extras (dict) – A dict of (key, value) with additional info to save

get_data()

Returns an Nx3 array of positions

get_scaled_data()

Returns data, scaled back to PBC box

init_positions()

Sends particle coordinates to OpenMM system. If system has exploded, this is

used in the code to reset coordinates.

init_velocities(temperature='current')
Initializes particles velocities

Parameters
temperature (temperature to set velocities (default: temerature of
the simulation)) –

8 Chapter 2. Structure

polychrom, Release 0.1.1

initialize(**kwargs)
Initialize, particles, velocities for the first time. Only need to use this function if your system has no forces
(free Brownian particles). Otherwise _apply_force() will execute these lines to add particles to the system,
initialize their positions/velocities, initialize the context.

local_energy_minimization(tolerance=0.3, maxIterations=0, random_offset=0.02)
A wrapper to the build-in OpenMM Local Energy Minimization

See caveat below

Parameters

• tolerance (float) – It is something like a value of force below which the minimizer is
trying to minimize energy to. see openmm documentation for description

Value of 0.3 seems to be fine for most normal forces.

• maxIterations (int) – Maximum # of iterations for minimization to do. default: 0
means there is no limit

This is relevant especially if your simulation does not have a well-defined energy minimum
(e.g. you want to simulate a collapse of a chain in some potential). In that case, if you don’t
limit energy minimization, it will attempt to do a whole simulation for you. In that case,
setting a limit to the # of iterations will just stop energy minimization manually when it
reaches this # of iterations.

• random_offset (float) – A random offset to introduce after energy minimization.
Should ideally make your forces have realistic values.

For example, if your stiffest force is polymer bond force with “wiggle_dist” of 0.05, setting
this to 0.02 will make separation between monomers realistic, and therefore will make force
values realistic.

See why do we need it in the caveat below.

Notes

If using variable langevin integrator after minimization, a big error may happen in the first timestep. The
reason is that enregy minimization makes all the forces basically 0. Variable langevin integrator measures
the forces and assumes that they are all small - so it makes the timestep very large, and at the first timestep
it overshoots completely and energy goes up a lot.

The workaround for now is to randomize positions after energy minimization

print_stats()

Prints detailed statistics of a system. Will be run every 50 steps

reinitialize()

Reinitializes the OpenMM context object. This should be called if low-level parameters, such as parameters
of forces, have changed

set_data(data, center=False, random_offset=1e-05, report=True)
Sets particle positions

Parameters

• data (Nx3 array-like) – Array of positions

• center (bool or "zero", optional) – Move center of mass to zero before starting
the simulation if center == “zero”, then center the data such as all positions are positive
and start at zero

2.1. polychrom.simulation module 9

polychrom, Release 0.1.1

• random_offset (float or None) – add random offset to each particle Recommended
for integer starting conformations and in general

• report (bool, optional) – If set to False, will not report this action to reporters.

set_velocities(v)
Set initial velocities of particles.

Parameters
v ((N, 3) array-like) – initial x, y, z velocities of the N particles

show(shifts=[0.0, 0.2, 0.4, 0.6, 0.8], scale='auto')
shows system in rasmol by drawing spheres draws 4 spheres in between any two points (5 * N spheres total)

2.2 polychrom.polymerutils module

2.2.1 Loading and saving individual conformations

The module polychrom.polymerutils provides tools for saving and loading individual conformations. Note that
saving and loading trajectories should generally be done using polychrom.hdf5_format module. This module pro-
vides tools for loading/saving invividual conformations, or for working with projects that have both old-style and new-
style trajectories.

For projects using both old-style and new-style trajectories(e.g. in a project that was switched to polychrom, and new
files were added), a function polychrom.polymerutils.fetch_block() can be helpful as it provides the same
interface for fetching a conformation from both old-style and new-style trajectory. Note however that it is not the fastest
way to iterate over conformations in the new-style trajectory, and the polychrom.hdf5_format.list_URIs() is
faster.

A typical workflow with the new-style trajectories should be:

URIs = polychrom.hdf5_format.list_URIs(folder)
for URI in URIs:

data = polychrom.hdf5_format.load_URI(URI)
xyz = data["pos"]

polychrom.polymerutils.fetch_block(folder, ind, full_output=False)
A more generic function to fetch block number “ind” from a trajectory in a folder

This function is useful both if you want to load both “old style” trajectories (block1.dat), and “new style” trajec-
tories (“blocks_1-50.h5”)

It will be used in files “show”

Parameters

• folder (str, folder with a trajectory) –

• ind (str or int, number of a block to fetch) –

• full_output (bool (default=False)) – If set to true, outputs a dict with positions, eP,
eK, time etc. if False, outputs just the conformation (relevant only for new-style URIs, so
default is False)

Returns

• data, Nx3 numpy array

• if full_output==True, then dict with data and metadata; XYZ is under key “pos”

10 Chapter 2. Structure

polychrom, Release 0.1.1

polychrom.polymerutils.load(filename)
Universal load function for any type of data file It always returns just XYZ positions - use fetch_block or
hdf5_format.load_URI for loading the whole metadata

2.2.2 Accepted file types

New-style URIs (HDF5 based storage)

Text files in openmm-polymer format joblib files in openmm-polymer format

param filename
filename to load or a URI

type filename
str

polychrom.polymerutils.rotation_matrix(rotate)
Calculates rotation matrix based on three rotation angles

polychrom.polymerutils.save(data, filename, mode='txt', pdbGroups=None)
Basically unchanged polymerutils.save function from openmm-polymer

It can save into txt or joblib formats used by old openmm-polymer

It is also very useful for saving files to PDB format to make them compatible with nglview, pymol_show and
others

2.3 polychrom.hdf5_format module

2.3.1 New-style HDF5 trajectories

The purpose of the HDF5 reporter

There are several reasons for migrating to the new HDF5 storage format:

• Saving each conformation as individual file is producing too many files

• Using pickle-based approaches (joblib) makes format python-specific and not backwards compatible; text is
clumsy

• Would be nice to save metadata, such as starting conformation, forces, or initial parameters.

• Compression can be benefitial for rounded conformations: can reduce file size by up to 40%

one file vs many files vs several files

Saving each conformation as an individual file is undesirable because it will produce too many files: filesystem check
or backup on 30,000,000 files takes hours/days.

Saving all trajectory as a single files is undesirable because 1. backup software will back up a new copy of the file every
day as it grows; and 2. if the last write fails, the file will end up in the corrupted state and would need to be recovered.

Solution is: save groups of conformations as individual files. E.g. save conformations 1-50 as one file, conformations
51-100 as a second file etc.

2.3. polychrom.hdf5_format module 11

polychrom, Release 0.1.1

This way, we are not risking to lose anything if the power goes out at the end. This way, we are not screwing with
backup solutions. This way, we have partial trajectories that can be analyzed. Although partial trajectories are not
realtime, @golobor was proposing a solution to it for debug/development.

Polychrom storage format

We chose the HDF5-based storage that roughly mimics the MDTraj HDF5 format. It does not have MDTraj topology
because it seemed a little too complicated. However, full MDTraj compatibility may be added in the future

Separation of simulation and repoter

Polychrom separates two entities: a simulation object and a reporter. When a simulation object is initialized, a reporter
(actually, a list of reporters in case you want to use several) is passed to the simulation object. Simulation object
would attempt to save several things: __init__ arguments, starting conformation, energy minimization results, serialized
forces, and blocks of conformations together with time, Ek, Ep.

Each time a simulation object wants to save something, it calls reporter.report(. . .) for each of the reporters. It passes a
string indicating what is being reported, and a dictionary to save. Reporter will have to interpret this and save the data.
Reporter is also keeping appropriate counts. Users can pass a dict with extra variables to polychrom.simulation.
Simulation.do_block() as save_extras paramater. This dict will be saved by the reporter.

Note: Generic Python objects are not supported by HDF5 reporter. Data has to be HDF5-compatible, meaning an
array of numbers/strings, or a number/string.

The HDF5 reporter used here saves everything into an HDF5 file. For anything except the conformations, it would
immmediately save the data into a single HDF5 file: numpy array compatible structures would be saved as datasets,
and regular types (strings, numbers) would be saved as attributes. For conformations, it would wait until a certain
number of conformations is received. It will then save them all at once into an HDF5 file under groups /1, /2, /3. . . /50
for blocks 1,2,3. . . 50 respectively, and save them to blocks_1-50.h5 file

Multi-stage simulations or loop extrusion

We frequently have simulations in which a simulation object changes. One example would be changing forces or
parameters throughout the simulation. Another example would be loop extrusion simulations.

In this design, a reporter object can be reused and passed to a new simulation. This would keep counter of con-
formations, and also save applied forces etc. again. The reporter would create a file “applied_forces_0.h5” the first
time it receives forces, and “applied_forces_1.h5” the second time it receives forces from a simulation. Setting re-
porter.blocks_only=True would stop the reporter from saving anything but blocks, which may be helpful for making
loop extrusion conformations. This is currently implemented in the examples

URIs to identify individual conformations

Because we’re saving several conformations into one file, we designed an URI format to quickly fetch a conformation
by a unique identifyer.

URIs are like that: /path/to/the/trajectory/blocks_1-50.h5::42

This URI will fetch block #42 from a file blocks_1-50.h5, which contains blocks 1 through 50 including 1 and
50 polychrom.polymerutils.load() function is compatible with URIs Also, to make it easy to load both old-
style filenames and new-style URIs, there is a function polychrom.polymerutils.fetch_block(). fetch_block

12 Chapter 2. Structure

polychrom, Release 0.1.1

will autodetermine the type of a trajectory folder. So it will fetch both /path/to/the/trajectory/block42.dat and
/path/to/the/trajectory/blocks_x-y.h5::42 automatically

class polychrom.hdf5_format.HDF5Reporter(folder, max_data_length=50, h5py_dset_opts=None,
overwrite=False, blocks_only=False, check_exists=True)

Bases: object

__init__(folder, max_data_length=50, h5py_dset_opts=None, overwrite=False, blocks_only=False,
check_exists=True)

Creates a reporter object that saves a trajectory to a folder

Parameters

• folder (str) – Folder to save data to.

• max_data_length (int, optional (default=50)) – Will save data in groups of
max_data_length blocks

• overwrite (bool, optional (default=False)) – Overwrite an existing trajectory in
a folder.

• check_exists (bool (optional, default=True)) – Raise an error if previous tra-
jectory exists in the folder

• blocks_only (bool, optional (default=False)) – Only save blocks, do not save
any other information

continue_trajectory(continue_from=None, continue_max_delete=5)
Continues a simulation in a current folder (i.e. continues from the last block, or the block you specify). By
default, takes the last block. Otherwise, takes the continue_from block

You should initialize the class with “check_exists=False” to continue a simulation

NOTE: This funciton does not continue the simulation itself (parameters, bonds, etc.) - it only manages
counting the blocks and the saved files.

Returns (block_number, data_dict) - you should start a new simulation with data_dict[“pos”]

Parameters

• continue_from (int or None, optional (default=None)) – Block number to
continue a simulation from. Default: last block found

• continue_max_delete (int (default = 5)) – Maximum number of blocks to delete
if continuing a simulation. It is here to avoid accidentally deleting a lot of blocks.

Returns

• (block_number, data_dict)

• block_number is a number of a current block

• data_dict is what load_URI would return on the last block of a trajectory.

dump_data()

report(name, values)
Semi-internal method to be called when you need to report something

Parameters

• name (str) – Name of what is being reported (“data”, “init_args”, anything else)

2.3. polychrom.hdf5_format module 13

polychrom, Release 0.1.1

• values (dict) – Dict of what to report. Accepted types are np-array-compatible, num-
bers, strings. No dicts, objects, or what cannot be converted to a np-array of numbers or
strings/bytes.

polychrom.hdf5_format.list_URIs(folder, empty_error=True, read_error=True, return_dict=False)
Makes a list of URIs (path-like records for each block). for a trajectory folder Now we store multiple blocks per
file, and URI is a Universal Resource Identifier for a block.

It is be compatible with polymerutils.load, and with contactmap finders, and is generally treated like a filename.

This function checks that the HDF5 file is openable (if read_error==True), but does not check if individual
datasets (blocks) exist in a file. If read_error==False, a non-openable file is fully ignored. NOTE: This covers
the most typical case of corruption due to a terminated write, because an HDF5 file becomes invalid in that case.

It does not check continuity of blocks (blocks_1-10.h5; blocks_20-30.h5 is valid) But it does error if one block
is listed twice (e.g. blocks_1-10.h5; blocks_5-15.h5 is invalid)

TODO: think about the above checks, and check for readable datasets as well

Parameters

• folder (str) – folder to find conformations in

• empty_error (bool, optional) – Raise error if the folder does not exist or has no files,
default True

• read_error (bool, optional) – Raise error if one of the HDF5 files cannot be read,
default True

• return_dict (bool, optional) – True: return a dict of {block_number, URI}. False:
return a list of URIs. This is a default.

polychrom.hdf5_format.load_URI(dset_path)
Loads a single block of the simulation using address provided by list_filenames dset_path should be

/path/to/trajectory/folder/blocks_X-Y.h5::Z

where Z is the block number

polychrom.hdf5_format.load_hdf5_file(fname)
Loads a saved HDF5 files, reading all datasets and attributes. We save arrays as datasets, and regular types as
attributes in HDF5

polychrom.hdf5_format.save_hdf5_file(filename, data_dict, dset_opts=None, mode='w')
Saves data_dict to filename

2.4 polychrom.polymer_analyses module

2.4.1 Analyses of polymer conformations

This module presents a collection of utils to work with polymer conformations.

14 Chapter 2. Structure

polychrom, Release 0.1.1

2.4.2 Tools for calculating contacts

The main function calculating contacts is: polychrom.polymer_analyses.calculate_contacts() Right now it
is a simple wrapper around scipy.cKDTree.

Another function polychrom.polymer_analyses.smart_contacts() was added recently to help build contact
maps with a large contact radius. It randomly sub-samples the monomers; by default selecting N/cutoff monomers. It
then calculates contacts from sub-sampled monomers only. It is especially helpful when the same code needs to calcu-
late contacts at large and small contact radii.Because of sub-sampling at large contact radius, it avoids the problem of
having way-too-many-contacts at a large contact radius. For ordinary contacts, the number of contacts scales as con-
tact_radius^3; however, with smart_contacts it would only scale linearly with contact radius, which leads to significant
speedsups.

2.4.3 Tools to calculate P(s) and R(s)

We provide functions to calculate P(s), Rg^2(s) and R^2(s) for polymers. By default, they use log-spaced bins on the X
axis, with about 10 bins per order of magnitude, but aligned such that the last bins ends exactly at (N-1). They output
(bin, scaling) for Rg^2 and R^2, and (bin_mid, scaling) for contacts. In either case, the returned values are ready to
plot. The difference is that Rg and R^2 are evaluated at a given value of s, while contacts are aggregated for (bins[0]..
bins[1]), (bins[1]..bins[2]). Therefore, we have to return bin mids for contacts.

polychrom.polymer_analyses.R2_scaling(data, bins=None, ring=False)
Returns end-to-end distance scaling of a given polymer conformation. ..warning:: This method averages end-to-
end scaling over all possible

subchains of given length

Parameters

• data (Nx3 array) –

• bins (the same as in giveCpScaling) –

• ring (is the polymer a ring?) –

polychrom.polymer_analyses.Rg2(data)
Simply calculates gyration radius of a polymer chain.

polychrom.polymer_analyses.Rg2_matrix(data)
Uses dynamic programming and vectorizing to calculate Rg for each subchain of the polymer. Returns a matrix
for which an element [i,j] is Rg of a subchain from i to j including i and j

polychrom.polymer_analyses.Rg2_scaling(data, bins=None, ring=False)
Calculates average gyration radius of subchains a function of s

Parameters

• data (Nx3 array) –

• bins (subchain lengths at which to calculate Rg) –

• ring (treat polymer as a ring (default: False)) –

polychrom.polymer_analyses.calculate_cistrans(data, chains, chain_id=0, cutoff=5, pbc_box=False,
box_size=None)

Analysis of the territoriality of polymer chains from simulations, using the cis/trans ratio. Cis signal is computed
for the marked chain (‘chain_id’) as amount of contacts of the chain with itself Trans signal is the total amount of
trans contacts for the marked chain with other chains from ‘chains’ (and with all the replicas for ‘pbc_box’=True)

2.4. polychrom.polymer_analyses module 15

polychrom, Release 0.1.1

polychrom.polymer_analyses.calculate_contacts(data, cutoff=1.7)
Calculates contacts between points give the contact radius (cutoff)

Parameters

• data (Nx3 array) – Coordinates of points

• cutoff (float , optional) – Cutoff distance (contact radius)

Returns
k by 2 array of contacts. Each row corresponds to a contact.

polychrom.polymer_analyses.contact_scaling(data, bins0=None, cutoff=1.1, *, ring=False)
Returns contact probability scaling for a given polymer conformation Contact between monomers X and X+1 is
counted as s=1

Parameters

• data (Nx3 array of ints/floats) – Input polymer conformation

• bins0 (list or None) – Bins to calculate scaling. Bins should probably be log-spaced;
log-spaced bins can be quickly calculated using mirnylib.numtuis.logbinsnew. If None, bins
will be calculated automatically

• cutoff (float, optional) – Cutoff to calculate scaling

• ring (bool, optional) – If True, will calculate contacts for the ring

Returns

• (mids, contact probabilities) where “mids” contains

• geometric means of bin start/end

polychrom.polymer_analyses.generate_bins(N, start=4, bins_per_order_magn=10)

polychrom.polymer_analyses.getLinkingNumber(data1, data2, simplify=True, randomOffset=True,
verbose=False)

Ported here from openmmlib as well.

polychrom.polymer_analyses.kabsch_msd(P, Q)
Calculates MSD between two vectors using Kabash alcorithm Borrowed from https://github.com/charnley/rmsd
with some changes

rmsd is licenced with a 2-clause BSD licence

Copyright (c) 2013, Jimmy Charnley Kromann <jimmy@charnley.dk> & Lars Bratholm All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

16 Chapter 2. Structure

https://github.com/charnley/rmsd
mailto:jimmy@charnley.dk

polychrom, Release 0.1.1

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

polychrom.polymer_analyses.kabsch_rmsd(P, Q)
Calculates MSD between two vectors using Kabash alcorithm Borrowed from https://github.com/charnley/rmsd
with some changes

rmsd is licenced with a 2-clause BSD licence

Copyright (c) 2013, Jimmy Charnley Kromann <jimmy@charnley.dk> & Lars Bratholm All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

polychrom.polymer_analyses.mutualSimplify(a, b, verbose=False)
Ported here from openmmlib.

Given two polymer rings, it attempts to reduce the number of monomers in each of them while preserving the
linking between them. It does so by trying to remove monomers one-by-one. If no other bonds pass through
the triangle formed by the 2 old bonds and 1 new bond, it accepts removal of the monomer. It does so until no
monomers in either of the rings can be removed.

polychrom.polymer_analyses.ndarray_groupby_aggregate(df, ndarray_cols, aggregate_cols,
value_cols=[], sample_cols=[], preset='sum',
ndarray_agg=<function <lambda>>,
value_agg=<function <lambda>>)

A version of pd.groupby that is aware of numpy arrays as values of columns

• aggregates columns ndarray_cols using ndarray_agg aggregator,

• aggregates value_cols using value_agg aggregator,

• takes the first element in sample_cols,

• aggregates over aggregate_cols

It has presets for sum, mean and nanmean.

polychrom.polymer_analyses.slope_contact_scaling(mids, cp, sigma=2)

polychrom.polymer_analyses.smart_contacts(data, cutoff=1.7, min_cutoff=2.1, percent_func=<function
<lambda>>)

2.4. polychrom.polymer_analyses module 17

https://github.com/charnley/rmsd
mailto:jimmy@charnley.dk

polychrom, Release 0.1.1

Calculates contacts for a polymer, give the contact radius (cutoff) This method takes a random fraction of the
monomers that is equal to (1/cutoff).

This is done to make contact finding faster, and because if cutoff radius is R, and monomer (i,j) are in contact,
then monomers (i+a), and (j+b) are likely in contact if |a| + |b| <~ R (the polymer could not run away by more
than R in R steps)

This method will have # of contacts grow approximately linearly with contact radius, not cubically, which should
drastically speed up computations of contacts for large (5+) contact radii. This should allow using the same code
both for small and large contact radius, without the need to reduce the # of conformations, subsample the data,
or both at very large contact radii.

Parameters

• data (Nx3 array) – Polymer coordinates

• cutoff (float , optional) – Cutoff distance that defines contact

• min_cutoff (float, optional) – Apply the “smart” reduction of contacts only when
cutoff is less than this value

• percent_func (callable, optional) – Function that calculates fraction of monomers
to use, as a function of cutoff Default is 1/cutoff

Returns
k by 2 array of contacts. Each row corresponds to a contact.

polychrom.polymer_analyses.streaming_ndarray_agg(in_stream, ndarray_cols, aggregate_cols,
value_cols=[], sample_cols=[], chunksize=30000,
add_count_col=False, divide_by_count=False)

Takes in_stream of dataframes

Applies ndarray-aware groupby-sum or groupby-mean: treats ndarray_cols as numpy arrays, value_cols as nor-
mal values, for sample_cols takes the first element.

Does groupby over aggregate_cols

if add_count_col is True, adds column “count”, if it’s a string - adds column with add_count_col name

if divide_by_counts is True, divides result by column “count”. If it’s a string, divides by divide_by_count column

This function can be used for automatically aggregating P(s), R(s) etc. for a set of conformations that is so large
that all P(s) won’t fit in RAM, and when averaging needs to be done over so many parameters that for-loops are
not an issue. Examples may include simulations in which sweep over many parameters has been performed.

2.5 polychrom.contactmaps module

2.5.1 Building contact maps

This module is the main workhorse of tools to calculate contactmaps, both from polymer simulations and from other
simulations (e.g. 1D simulations of loop extrusion). All of the functions here are designed to be parallelized, and lots
of efforts were put into making this possible.

The reasons we need parallel contactmap code is the following:

• Calculating contact maps is slow, esp. at large contact radii, and benefits greatly from parallelizing

• Doing regular multiprocesing.map has limitations

18 Chapter 2. Structure

polychrom, Release 0.1.1

• It can only handle heataps up to some size, and transferring gigabyte-sized heatmaps between processes takes
minutes

• It can only do as many heatmaps as fits in RAM, which on 20-core 128GB machine is no more than 5GB/heatmap

The structure of this class is as follows.

On the outer level, it provides three methods to average contactmaps:

• monomerResolutionContactMap()

• binnedContactMap(),

• monomerResolutionContactMapSubchains().

The first two create contact map from an entire file: either monomer-resolution or binned. The last one creates contact
maps from sub-chains in a file, starting at a given set of starting points. It is useful when doing contact maps from
several copies of a system in one simulation.

The first two methods have a legacy implementation from the old library that is still here to do the tests.

On the middle level, it provides a method “averageContacts”. This method accepts a “contact iterator”, and can be used
to average contacts from both a set of filenames and from a simulation of some kind (e.g. averaging positions of loop ex-
truding factors from a 1D loop extrusion simulation). All of the outer level functions (monomerResolutionContactMap
for example) are implemented using this method.

On the lower level, there are internals of the “averageContacts” method and an associated “worker” function. There
is generally no need to understand the code of those functions. There exists a reference implementation of both the
worker and the averageContacts() function, simpleWorker and averageContactsSimple(). They do all the
things that “averageContacts” do, but on only one core. In fact, “averageContacts” defaults to “averageContactsSimple”
if requested to run on one core because it is a little bit faster.

polychrom.contactmaps.averageContacts(contactIterator, inValues, N, **kwargs)
A main workhorse for averaging contacts on multiple cores into one shared contact map. It mostly does managing
the arguments, and initializing the variables. All of the logic of how contacts are actually put in shared memory
buckets is in the worker defined above.

Parameters

• contactIterator (iterator) – an iterator. See descriptions of “filenameContactMap”
class below for example and explanations

• inValues (iterable) – an array of values to pass to contactIterator. Would be an array of
arrays of filenames or something like that.

• N (int) – Size of one side of the resulting contactmap

• arrayDtype (ctypes dtype (default c_int32) for the contact map) –

• classInitArgs (args to pass to the constructor of contact iterator) –

• classInitKwargs (dict of keyword args to pass to the constructor) –

• contactProcessing (function f(contacts), should return processed
contacts) –

• nproc (int, number of processors(default 4)) –

• bucketNum (int (default = nproc) Number of memory buckets to use) –

• contactBlock (int (default 500k) Number of contacts to aggregate
before writing) –

• useFmap (True, False, or callable) – If True, uses mirnylib.systemutils.fmap If
False, uses multiprocessing.Pool.map Otherwise, uses provided function, assuming it of a

2.5. polychrom.contactmaps module 19

polychrom, Release 0.1.1

fork-map type (different initializations are needed for forkmap and multiprocessing-style
map)

Sorry, no outside multiprocessing-style maps for now, it’s easy to fix Let me know if it is
needed.

Code that calcualtes a contactmap from a set of polymer conformation is in the methods below (averageMonomer-
ResolutionContactMap, etc.)

An example code that would run a contactmap from a simulation is below:

..code-block:: python

class simContactMap(object):
“contactmap ‘finder’ for a simulation” def __init__(self, ind): # accept a parameter (e.g. random
number generator seed)

self.model = initModel(ind) # pass parameter to the functon that returns me a
model object self.count = 10000000 # how many times to run a step of the model
self.model.steps(10000) # initial steps of the model to equilibrate it

def next(self): # actual realization of the self.next method

if self.count == 0: # terminate the simulation if we did self.count iterations
raise StopIteration

self.count -= 1 #decrement the counter self.model.steps(30) # advance model by 30 steps
return np.array(self.model.getSMCs()).T # return current LEF positions

mymap = polychrom.contactmaps.averageContacts(simContactMap, range(20), 30000, nproc=20)

polychrom.contactmaps.averageContactsSimple(contactIterator, inValues, N, **kwargs)
This is a reference one-core implementation

Parameters

• contactIterator – an iterator. See descriptions of “filenameContactMap” class below for
example and explanations

• inValues – an array of values to pass to contactIterator. Would be an array of arrays of
filenames etc.

• N – Size of the resulting contactmap

• **kwargs – arrayDtype: ctypes dtype (default c_int32) for the contact map classInitArgs:
args to pass to the constructor of contact iterator as second+ args (first is the file list)
classInitKwargs: dict of keyword args to pass to the coonstructor uniqueContacts: whether
contact iterator outputs unique contacts (true) or contacts can be duplicate (False) contact-
Processing: function f(contacts), should return processed contacts

Returns
contactmap

polychrom.contactmaps.binnedContactMap(filenames, chains=None, binSize=5, cutoff=5, n=8,
contactFinder=<function calculate_contacts>,
loadFunction=<function load>, exceptionsToIgnore=None,
useFmap=False)

polychrom.contactmaps.chunk(mylist, chunksize)

Parameters

• mylist – array

20 Chapter 2. Structure

polychrom, Release 0.1.1

• chunksize – int

Returns
list of chunks of an array len chunksize (last chunk is less)

class polychrom.contactmaps.filenameContactMap(filenames, cutoff=1.7, loadFunction=None,
exceptionsToIgnore=[], contactFunction=None)

Bases: object

This is the iterator for the contact map finder

__init__(filenames, cutoff=1.7, loadFunction=None, exceptionsToIgnore=[], contactFunction=None)
Init accepts arguments to initialize the iterator. filenames will be one of the items in the inValues list
of the “averageContacts” function cutoff and loadFunction should be provided either in classInitArgs or
classInitKwargs of averageContacts

When initialized, the iterator should store these args properly and create all necessary constructs

next()

This is the method which gets called by the worker asking for contacts. This method should return new
set of contacts each time it is called When there are no more contacts to return (all filenames are gone, or
simulation is over), then this method should raise StopIteration

class polychrom.contactmaps.filenameContactMapRepeat(filenames, mapStarts, mapN, cutoff=1.7,
loadFunction=None, exceptionsToIgnore=[],
contactFunction=None)

Bases: object

This is a interator for the repeated contact map finder

__init__(filenames, mapStarts, mapN, cutoff=1.7, loadFunction=None, exceptionsToIgnore=[],
contactFunction=None)

Init accepts arguments to initialize the iterator. filenames will be one of the items in the inValues list
of the “averageContacts” function cutoff and loadFunction should be provided either in classInitArgs or
classInitKwargs of averageContacts

When initialized, the iterator should store these args properly and create all necessary constructs

next()

This is the method which gets called by the worker asking for contacts. This method should return new
set of contacts each time it is called When there are no more contacts to return (all filenames are gone, or
simulation is over), then this method should raise StopIteration

polychrom.contactmaps.findN(filenames, loadFunction, exceptions)
Finds length of data in filenames, handling the fact that files could be not loadable

polychrom.contactmaps.indexing(smaller, larger, M)
converts x-y indexes to index in the upper triangular matrix

polychrom.contactmaps.init(*args)
Initializes global arguments for the worker

polychrom.contactmaps.monomerResolutionContactMap(filenames, cutoff=5, n=8, contactFinder=<function
calculate_contacts>, loadFunction=<function
load>, exceptionsToIgnore=[], useFmap=False)

2.5. polychrom.contactmaps module 21

polychrom, Release 0.1.1

polychrom.contactmaps.monomerResolutionContactMapSubchains(filenames, mapStarts, mapN, cutoff=5,
n=8, method=<function
calculate_contacts>,
loadFunction=<function load>,
exceptionsToIgnore=[],
useFmap=False)

polychrom.contactmaps.simple_worker(x, uniqueContacts)
A “reference” version of “worker” function below that runs on only one core. Unlike the actual multicore worker,
it can write contacts to the matrix directly without sorting. This is useful when your contact finding is faster than
sorting a 1D array fo contacts

If uniqueContacts True, assume that contactFinder outputs only unique contacts (like pure contact
map) if False, do not assume that (like in binned contact map). Using False is always safe, but True
will add a minor speed up, especially for very large contact radius.

polychrom.contactmaps.tonumpyarray(mp_arr)
Converts mp.array to numpy array

polychrom.contactmaps.triagToNormal(triag, M)
Convert triangular matrix to a regular matrix

polychrom.contactmaps.worker(x)
This is a parallel implementation of the worker using shared memory buckets This worker is being called by the
averageContact method It receives contacts from the contactIterator by calling .next() And puts contacts into the
shared memory buckets

All the locks etc. for shared memory objects are handeled here as well

2.6 polychrom.forces module

2.6.1 Detailed description of forces in polychrom

This module defines forces commonly used in polychrom. Most forces are implemented using custom forces in
openmm. The force equations were generally derived such that the force and the first derivative both go to zero at
the cutoff radius.

Parametrization of bond forces

Most of the bond forces are parametrized using two parametrs: bondLength and bondWiggleDistance. The parameter
bondLength is length of the bond at rest, while bondWiggleDistance is the estension of the bond at which energy reaches
1kT.

Note that the actual standard deviation of the bond length is bondWiggleDistance/sqrt(2) for a harmonic bond force,
and is bondWiggleDistance*sqrt(2) for constant force bonds, so if you are switching from harmonic bonds to constant
force, you may choose to decrease the wiggleDistance by a factor of 2.

22 Chapter 2. Structure

polychrom, Release 0.1.1

Note on energy equations

Energy equations are passed as strings to one of the OpenMM customXXXForce class (e.g. customNonbondedForce).
Note two things. First, sub-equations are separated by semicolon, and are evaluated “bottom up”, last equation first.
Second, equations seem much more scary than they actually are (see below).

All energy equations have to be continuous, and we strongly believe that the first derivative has to be continuous as
well. As a result, all equations were carefully crafted to be smooth functions. This makes things more complicated.
For example, a simple “k * abs(x-x0)” becomes “k * (sqrt((x-x0)^2 + a^2) - a)” where a is a small number (defined to
be 0.01 for example).

All energy equations have to be calculatable in single precision. Any rounding error will throw you off. For example,
you should never have sqrt(A - B) where A and B are expressions, and A >= B. Because by chance, due to rounding, you
may and up with A slightly less than B, and you will receive NaN, and the whole simulation will blow up. Similarly,
atan(very_large_number), while defined mathematically, could easily become NaN, because very_large_number may
be larger than the largest allowable float.

Note that basically all nonbonded forces were written before OpenMM introduced a switching function http://
docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomNonbondedForce.html Therefore, we
always manually sticth the value and the first derivative of the force to be 0 at the cutoff distance. For custom user-
defined forces, it may be better to use switching function instead. This does not apply to custom external forces, there
stitching is still necessary.

Force equations don’t have “if” statements, but it is possible to avoid them where they would be normally used.
For example, “if a: b= b0 + c” can be replaced with “b = b0 + c * delta(a)”. Similarly “f(r) if r < r0; 0 oth-
erwise” is just “f(r) * step(r0 - r)”. These examples appear frequently in the forces that we have. One of the
finest examples of crafting complex forces with on-the-fly generation of force equation is in polychrom.forces.
heteropolymer_SSW(). One of the best examples of optimizing complex forces using polynomials is in polychrom.
forces.polynomial_repulsive().

polychrom.forces.angle_force(sim_object, triplets, k=1.5, theta_0=<Mock name='mock.pi'
id='139910982005648'>, name='angle', override_checks=False)

Adds harmonic angle bonds. k specifies energy in kT at one radian If k is an array, it has to be of the length N.
Xth value then specifies stiffness of the angle centered at monomer number X. Values for ends of the chain will
be simply ignored.

Parameters

• k (float or list of length N) – Stiffness of the bond. If list, then determines the
stiffness of the i-th triplet Potential is k * alpha^2 * 0.5 * kT

• theta_0 (float or list of length N) – Equilibrium angle of the bond. By default it
is np.pi.

• override_checks (bool) – If True then do not check that no bonds are repeated. False by
default.

polychrom.forces.constant_force_bonds(sim_object, bonds, bondWiggleDistance=0.05, bondLength=1.0,
quadraticPart=0.02, name='abs_bonds', override_checks=False)

Constant force bond force. Energy is roughly linear with estension after r=quadraticPart; before it is quadratic to
make sure the force is differentiable.

Force is parametrized using the same approach as bond force: it reaches U=kT at extension = bondWiggleDis-
tance

Note that, just as with bondForce, mean squared extension is actually larger than wiggleDistance by sqrt(2) factor.

Parameters

2.6. polychrom.forces module 23

http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomNonbondedForce.html
http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomNonbondedForce.html

polychrom, Release 0.1.1

• bonds (iterable of (int, int)) – Pairs of particle indices to be connected with a
bond.

• bondWiggleDistance (float) – Displacement at which bond energy equals 1 kT. Can be
provided per-particle.

• bondLength (float) – The length of the bond. Can be provided per-particle.

• override_checks (bool) – If True then do not check that no bonds are repeated. False by
default.

polychrom.forces.cylindrical_confinement(sim_object, r, bottom=None, k=0.1, top=9999,
name='cylindrical_confinement')

As it says.

polychrom.forces.grosberg_angle(sim_object, triplets, k=1.5, name='grosberg_angle',
override_checks=False)

Adds stiffness according to the Grosberg paper. (Halverson, Jonathan D., et al. “Molecular dynamics simulation
study of nonconcatenated ring polymers in a melt. I. Statics.” The Journal of chemical physics 134 (2011):
204904.)

Parameters are synchronized with normal stiffness

If k is an array, it has to be of the length N. Xth value then specifies stiffness of the angle centered at monomer
number X. Values for ends of the chain will be simply ignored.

Parameters

• k (float or N-long list of floats) – Synchronized with regular stiffness. Default
value is very flexible, as in Grosberg paper. Default value maximizes entanglement length.

• override_checks (bool) – If True then do not check that no bonds are repeated. False by
default.

polychrom.forces.grosberg_polymer_bonds(sim_object, bonds, k=30, name='grosberg_polymer',
override_checks=False)

Adds FENE bonds according to Halverson-Grosberg paper. (Halverson, Jonathan D., et al. “Molecular dynamics
simulation study of

nonconcatenated ring polymers in a melt. I. Statics.” The Journal of chemical physics 134 (2011):
204904.)

This method has a repulsive potential build-in, so that Grosberg bonds could be used with truncated potentials.
Is of no use unless you really need to simulate Grosberg-type system.

Parameters

• k (float, optional) – Arbitrary parameter; default value as in Grosberg paper.

• override_checks (bool) – If True then do not check that no bonds are repeated. False by
default.

polychrom.forces.grosberg_repulsive_force(sim_object, trunc=None, radiusMult=1.0,
name='grosberg_repulsive', trunc_function='min(trunc1,
trunc2)')

This is the fastest non-transparent repulsive force. (that preserves topology, doesn’t allow chain passing) Done
according to the paper: (Halverson, Jonathan D., et al. “Molecular dynamics simulation study of

nonconcatenated ring polymers in a melt. I. Statics.” The Journal of chemical physics 134 (2011):
204904.)

Parameters

24 Chapter 2. Structure

polychrom, Release 0.1.1

• trunc (None, float or N-array of floats) – “transparency” values for each partic-
ular particle, which correspond to the truncation values in kT for the grosberg repulsion
energy between a pair of such particles. Value of 1.5 yields frequent passing, 3 - average
passing, 5 - rare passing.

• radiusMult (float (optional)) – Multiplier for the size of the force. To make scale the
energy larger, set to be more than 1.

• trunc_function (str (optional)) – a formula to calculate the truncation between a pair
of particles with transparencies trunc1 and trunc2 Default is min(trunc1, trunc2)

polychrom.forces.harmonic_bonds(sim_object, bonds, bondWiggleDistance=0.05, bondLength=1.0,
name='harmonic_bonds', override_checks=False)

Adds harmonic bonds.

Bonds are parametrized in the following way.

• A length of a bond at rest is bondLength

• Bond energy equal to 1kT at bondWiggleDistance

Note that bondWiggleDistance is not the standard deviation of the bond extension: that is actually smaller by a
factor of sqrt(2).

Parameters

• bonds (iterable of (int, int)) – Pairs of particle indices to be connected with a
bond.

• bondWiggleDistance (float or iterable of float) – Distance at which bond en-
ergy equals kT. Can be provided per-particle. If 0 then set k=0.

• bondLength (float or iterable of float) – The length of the bond. Can be pro-
vided per-particle.

• override_checks (bool) – If True then do not check that no bonds are repeated. False by
default.

polychrom.forces.heteropolymer_SSW(sim_object, interactionMatrix, monomerTypes, extraHardParticlesIdxs,
repulsionEnergy=3.0, repulsionRadius=1.0, attractionEnergy=3.0,
attractionRadius=1.5, selectiveRepulsionEnergy=20.0,
selectiveAttractionEnergy=1.0, keepVanishingInteractions=False,
name='heteropolymer_SSW')

A version of smooth square well potential that enables the simulation of heteropolymers. Every monomer is
assigned a number determining its type, then one can specify additional attraction between the types with the in-
teractionMatrix. Repulsion between all monomers is the same, except for extraHardParticles, which, if specified,
have higher repulsion energy.

The overall potential is the same as in polychrom.forces.smooth_square_well()

Treatment of extraHard particles is the same as in polychrom.forces.selective_SSW()

This is an extension of SSW (smooth square well) force in which:

a) You can give monomerTypes (e.g. 0, 1, 2 for A, B, C) and interaction strengths between these types.
The corresponding entry in interactionMatrix is multiplied by selectiveAttractionEnergy to give the actual
additional depth of the potential well.

b) You can select a subset of particles and make them “extra hard”. See selective_SSW force for descrition.

2.6. polychrom.forces module 25

polychrom, Release 0.1.1

2.6.2 Force summary

Potential is the same as smooth square well, with the following parameters for particles i and j:

• Attraction energy (i,j) = attractionEnergy + selectiveAttractionEnergy * interactionMatrix[i,j]

• Repulsion Energy (i,j) = repulsionEnergy + selectiveRepulsionEnergy; if (i) or (j) are extraHard

• Repulsion Energy (i,j) = repulsionEnergy; otherwise

param interactionMatrix
the EXTRA interaction strenghts between the different types. Only upper triangular values are
used. See “Force summary” abovec

type interactionMatrix
np.array

param monomerTypes
the type of each monomer, starting at 0

type monomerTypes
list of int or np.array

param extraHardParticlesIdxs
the list of indices of the “extra hard” particles. The extra hard particles repel all other particles
with extra selectiveRepulsionEnergy

type extraHardParticlesIdxs
list of int

param repulsionEnergy
the heigth of the repulsive part of the potential. E(0) = repulsionEnergy

type repulsionEnergy
float

param repulsionRadius
the radius of the repulsive part of the potential. E(repulsionRadius) = 0, E’(repulsionRadius) =
0

type repulsionRadius
float

param attractionEnergy
the depth of the attractive part of the potential. E(repulsionRadius/2 + attractionRadius/2) =
attractionEnergy

type attractionEnergy
float

param attractionRadius
the maximal range of the attractive part of the potential.

type attractionRadius
float

param selectiveRepulsionEnergy
the EXTRA repulsion energy applied to the “extra hard” particles

type selectiveRepulsionEnergy
float

26 Chapter 2. Structure

polychrom, Release 0.1.1

param selectiveAttractionEnergy
the EXTRA attraction energy (prefactor for the interactionMatrix interactions)

type selectiveAttractionEnergy
float

param keepVanishingInteractions
a flag that determines whether the terms that have zero interaction are still added to the force.
This can be useful when changing the force dynamically (i.e. switching interactions on at some
point)

type keepVanishingInteractions
bool

polychrom.forces.polynomial_repulsive(sim_object, trunc=3.0, radiusMult=1.0,
name='polynomial_repulsive')

This is a simple polynomial repulsive potential. It has the value of trunc at zero, stays flat until 0.6-0.7 and then
drops to zero together with its first derivative at r=1.0.

See the gist below with an example of the potential. https://gist.github.com/mimakaev/
0327bf6ffe7057ee0e0625092ec8e318

Parameters
trunc (float) – the energy value around r=0

polychrom.forces.pull_force(sim_object, particles, force_vecs, name='Pull')
adds force pulling on each particle particles: list of particle indices force_vecs: list of forces
[[f0x,f0y,f0z],[f1x,f1y,f1z], . . .] if there are fewer forces than particles forces are padded with forces[-1]

polychrom.forces.selective_SSW(sim_object, stickyParticlesIdxs, extraHardParticlesIdxs,
repulsionEnergy=3.0, repulsionRadius=1.0, attractionEnergy=3.0,
attractionRadius=1.5, selectiveRepulsionEnergy=20.0,
selectiveAttractionEnergy=1.0, name='selective_SSW')

This is a simple and fast polynomial force that looks like a smoothed version of the square-well potential. The en-
ergy equals repulsionEnergy around r=0, stays flat until 0.6-0.7, then drops to zero together with its first derivative
at r=1.0. After that it drop down to attractionEnergy and gets back to zero at r=`attractionRadius`.

The energy function is based on polynomials of 12th power. Both the function and its first derivative is continuous
everywhere within its domain and they both get to zero at the boundary.

This is a tunable version of SSW: a) You can specify the set of “sticky” particles. The sticky particles are attracted
only to other sticky particles. b) You can smultaneously select a subset of particles and make them “extra hard”.

This force was used two-ways. First was to make a small subset of particles very sticky. In that case, it is
advantageous to make the sticky particles and their neighbours “extra hard” and thus prevent the system from
collapsing.

Another useage is to induce phase separation by making all B monomers sticky. In that case, extraHard particles
may not be needed at all, because the system would not collapse on iteslf.

Parameters

• stickyParticlesIdxs (list of int) – the list of indices of the “sticky” particles. The
sticky particles are attracted to each other with extra selectiveAttractionEnergy

• extraHardParticlesIdxs (list of int) – the list of indices of the “extra hard” parti-
cles. The extra hard particles repel all other particles with extra selectiveRepulsionEnergy

• repulsionEnergy (float) – the heigth of the repulsive part of the potential. E(0) = repul-
sionEnergy

2.6. polychrom.forces module 27

https://gist.github.com/mimakaev/0327bf6ffe7057ee0e0625092ec8e318
https://gist.github.com/mimakaev/0327bf6ffe7057ee0e0625092ec8e318

polychrom, Release 0.1.1

• repulsionRadius (float) – the radius of the repulsive part of the potential.
E(repulsionRadius) = 0, E’(repulsionRadius) = 0

• attractionEnergy (float) – the depth of the attractive part of the potential.
E(repulsionRadius/2 + attractionRadius/2) = attractionEnergy

• attractionRadius (float) – the maximal range of the attractive part of the potential.

• selectiveRepulsionEnergy (float) – the EXTRA repulsion energy applied to the extra
hard particles

• selectiveAttractionEnergy (float) – the EXTRA attraction energy applied to the
sticky particles

polychrom.forces.smooth_square_well(sim_object, repulsionEnergy=3.0, repulsionRadius=1.0,
attractionEnergy=0.5, attractionRadius=2.0,
name='smooth_square_well')

This is a simple and fast polynomial force that looks like a smoothed version of the square-well potential. The en-
ergy equals repulsionEnergy around r=0, stays flat until 0.6-0.7, then drops to zero together with its first derivative
at r=1.0. After that it drop down to attractionEnergy and gets back to zero at r=`attractionRadius`.

The energy function is based on polynomials of 12th power. Both the function and its first derivative is continuous
everywhere within its domain and they both get to zero at the boundary.

Parameters

• repulsionEnergy (float) – the heigth of the repulsive part of the potential. E(0) = repul-
sionEnergy

• repulsionRadius (float) – the radius of the repulsive part of the potential.
E(repulsionRadius) = 0, E’(repulsionRadius) = 0

• attractionEnergy (float) – the depth of the attractive part of the potential.
E(repulsionRadius/2 + attractionRadius/2) = attractionEnergy

• attractionRadius (float) – the radius of the attractive part of the potential.
E(attractionRadius) = 0, E’(attractionRadius) = 0

polychrom.forces.spherical_confinement(sim_object, r='density', k=5.0, density=0.3, center=[0, 0, 0],
invert=False, particles=None, name='spherical_confinement')

Constrain particles to be within a sphere. With no parameters creates sphere with density .3

Parameters

• r (float or "density", optional) – Radius of confining sphere. If “density” requires
density, or assumes density = .3

• k (float, optional) – Steepness of the confining potential, in kT/nm

• density (float, optional, <1) – Density for autodetection of confining radius. Den-
sity is calculated in particles per nm^3, i.e. at density 1 each sphere has a 1x1x1 cube.

• center ([float, float, float]) – The coordinates of the center of the sphere.

• invert (bool) – If True, particles are not confinded, but excluded from the sphere.

• particles (list of int) – The list of particles affected by the force. If None, apply the
force to all particles.

polychrom.forces.spherical_well(sim_object, particles, r, center=[0, 0, 0], width=1, depth=1,
name='spherical_well')

A spherical potential well, suited for example to simulate attraction to a lamina.

28 Chapter 2. Structure

polychrom, Release 0.1.1

Parameters

• particles (list of int or np.array) – indices of particles that are attracted

• r (float) – Radius of the nucleus

• center (vector, optional) – center position of the sphere. This parameter is useful
when confining chromosomes to their territory.

• width (float, optional) – Width of attractive well, nm.

• depth (float, optional) – Depth of attractive potential in kT NOTE: switched sign from
openmm-polymer, because it was confusing. Now this parameter is really the depth of the
well, i.e. positive = attractive, negative = repulsive

polychrom.forces.tether_particles(sim_object, particles, *, pbc=False, k=30, positions='current',
name='Tethers')

tethers particles in the ‘particles’ array. Increase k to tether them stronger, but watch the system!

Parameters

• particles (list of ints) – List of particles to be tethered (fixed in space). Negative
values are allowed.

• pbc (Bool, optional) – If True, periodicdistance function is applied

• k (int, optional) – The steepness of the tethering potential. Values >30 will require
decreasing potential, but will make tethering rock solid. Can be provided as a vector [kx, ky,
kz].

2.6. polychrom.forces module 29

polychrom, Release 0.1.1

30 Chapter 2. Structure

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

31

polychrom, Release 0.1.1

32 Chapter 3. Indices and tables

PYTHON MODULE INDEX

p
polychrom.contactmaps, 18
polychrom.forces, 22
polychrom.hdf5_format, 11
polychrom.polymer_analyses, 14
polychrom.polymerutils, 10
polychrom.simulation, 5

33

polychrom, Release 0.1.1

34 Python Module Index

INDEX

Symbols
__init__() (polychrom.contactmaps.filenameContactMap

method), 21
__init__() (polychrom.contactmaps.filenameContactMapRepeat

method), 21
__init__() (polychrom.hdf5_format.HDF5Reporter

method), 13
__init__() (polychrom.simulation.Simulation method),

7

A
add_force() (polychrom.simulation.Simulation

method), 8
angle_force() (in module polychrom.forces), 23
averageContacts() (in module poly-

chrom.contactmaps), 19
averageContactsSimple() (in module poly-

chrom.contactmaps), 20

B
binnedContactMap() (in module poly-

chrom.contactmaps), 20

C
calculate_cistrans() (in module poly-

chrom.polymer_analyses), 15
calculate_contacts() (in module poly-

chrom.polymer_analyses), 15
chunk() (in module polychrom.contactmaps), 20
constant_force_bonds() (in module poly-

chrom.forces), 23
contact_scaling() (in module poly-

chrom.polymer_analyses), 16
continue_trajectory() (poly-

chrom.hdf5_format.HDF5Reporter method),
13

cylindrical_confinement() (in module poly-
chrom.forces), 24

D
dist() (polychrom.simulation.Simulation method), 8

do_block() (polychrom.simulation.Simulation method),
8

dump_data() (polychrom.hdf5_format.HDF5Reporter
method), 13

E
EKExceedsError, 6

F
fetch_block() (in module polychrom.polymerutils), 10
filenameContactMap (class in poly-

chrom.contactmaps), 21
filenameContactMapRepeat (class in poly-

chrom.contactmaps), 21
findN() (in module polychrom.contactmaps), 21

G
generate_bins() (in module poly-

chrom.polymer_analyses), 16
get_data() (polychrom.simulation.Simulation method),

8
get_scaled_data() (polychrom.simulation.Simulation

method), 8
getLinkingNumber() (in module poly-

chrom.polymer_analyses), 16
grosberg_angle() (in module polychrom.forces), 24
grosberg_polymer_bonds() (in module poly-

chrom.forces), 24
grosberg_repulsive_force() (in module poly-

chrom.forces), 24

H
harmonic_bonds() (in module polychrom.forces), 25
HDF5Reporter (class in polychrom.hdf5_format), 13
heteropolymer_SSW() (in module polychrom.forces),

25

I
indexing() (in module polychrom.contactmaps), 21
init() (in module polychrom.contactmaps), 21
init_positions() (polychrom.simulation.Simulation

method), 8

35

polychrom, Release 0.1.1

init_velocities() (polychrom.simulation.Simulation
method), 8

initialize() (polychrom.simulation.Simulation
method), 8

IntegrationFailError, 6

K
kabsch_msd() (in module poly-

chrom.polymer_analyses), 16
kabsch_rmsd() (in module poly-

chrom.polymer_analyses), 17

L
list_URIs() (in module polychrom.hdf5_format), 14
load() (in module polychrom.polymerutils), 10
load_hdf5_file() (in module polychrom.hdf5_format),

14
load_URI() (in module polychrom.hdf5_format), 14
local_energy_minimization() (poly-

chrom.simulation.Simulation method), 9

M
module

polychrom.contactmaps, 18
polychrom.forces, 22
polychrom.hdf5_format, 11
polychrom.polymer_analyses, 14
polychrom.polymerutils, 10
polychrom.simulation, 5

monomerResolutionContactMap() (in module poly-
chrom.contactmaps), 21

monomerResolutionContactMapSubchains() (in
module polychrom.contactmaps), 21

mutualSimplify() (in module poly-
chrom.polymer_analyses), 17

N
ndarray_groupby_aggregate() (in module poly-

chrom.polymer_analyses), 17
next() (polychrom.contactmaps.filenameContactMap

method), 21
next() (polychrom.contactmaps.filenameContactMapRepeat

method), 21

P
polychrom.contactmaps
module, 18

polychrom.forces
module, 22

polychrom.hdf5_format
module, 11

polychrom.polymer_analyses
module, 14

polychrom.polymerutils
module, 10

polychrom.simulation
module, 5

polynomial_repulsive() (in module poly-
chrom.forces), 27

print_stats() (polychrom.simulation.Simulation
method), 9

pull_force() (in module polychrom.forces), 27

R
R2_scaling() (in module poly-

chrom.polymer_analyses), 15
reinitialize() (polychrom.simulation.Simulation

method), 9
report() (polychrom.hdf5_format.HDF5Reporter

method), 13
RG() (polychrom.simulation.Simulation method), 7
Rg2() (in module polychrom.polymer_analyses), 15
Rg2_matrix() (in module poly-

chrom.polymer_analyses), 15
Rg2_scaling() (in module poly-

chrom.polymer_analyses), 15
rotation_matrix() (in module poly-

chrom.polymerutils), 11

S
save() (in module polychrom.polymerutils), 11
save_hdf5_file() (in module polychrom.hdf5_format),

14
selective_SSW() (in module polychrom.forces), 27
set_data() (polychrom.simulation.Simulation method),

9
set_velocities() (polychrom.simulation.Simulation

method), 10
show() (polychrom.simulation.Simulation method), 10
simple_worker() (in module polychrom.contactmaps),

22
Simulation (class in polychrom.simulation), 6
slope_contact_scaling() (in module poly-

chrom.polymer_analyses), 17
smart_contacts() (in module poly-

chrom.polymer_analyses), 17
smooth_square_well() (in module polychrom.forces),

28
spherical_confinement() (in module poly-

chrom.forces), 28
spherical_well() (in module polychrom.forces), 28
streaming_ndarray_agg() (in module poly-

chrom.polymer_analyses), 18

T
tether_particles() (in module polychrom.forces), 29

36 Index

polychrom, Release 0.1.1

tonumpyarray() (in module polychrom.contactmaps),
22

triagToNormal() (in module polychrom.contactmaps),
22

W
worker() (in module polychrom.contactmaps), 22

Index 37

	Installation
	Installation errors and possible fixes

	Structure
	polychrom.simulation module
	Creating a simulation: Simulation class
	Overall parameters
	Adding forces
	Defining your own forces
	Running a simulation

	polychrom.polymerutils module
	Loading and saving individual conformations
	Accepted file types

	polychrom.hdf5_format module
	New-style HDF5 trajectories
	The purpose of the HDF5 reporter
	one file vs many files vs several files
	Polychrom storage format
	Separation of simulation and repoter
	Multi-stage simulations or loop extrusion
	URIs to identify individual conformations

	polychrom.polymer_analyses module
	Analyses of polymer conformations
	Tools for calculating contacts
	Tools to calculate P(s) and R(s)

	polychrom.contactmaps module
	Building contact maps

	polychrom.forces module
	Detailed description of forces in polychrom
	Parametrization of bond forces
	Note on energy equations

	Force summary

	Indices and tables
	Python Module Index
	Index

